两篇中文文本,如何计算相似度?相似度是数学上的概念,自然语言肯定无法完成,所有要把文本转化为向量。转化为向量之后便可以使用欧式距离、余弦距离等计算相似度,或者通过Softmax网络(或基于Hierarchical Softmax的模型或基于Negative Sampling的模型)计算属类概率。
【转】 python文本相似度计算
步骤
- 分词、去停用词
- 词袋模型向量化文本
- TF-IDF模型向量化文本
- LSI模型向量化文本
- 计算相似度
理论
如何向量化:
词袋模型
最简单的表示方法是词袋模型。把一篇文本想象成一个个词构成的,所有词放入一个袋子里,没有先后顺序、没有语义。
例如:
John likes to watch movies. Mary likes too.
John also likes to watch football games.
这两个句子,可以构建出一个词典,key为上文出现过的词,value为这个词的索引序号
{“John”: 1, “likes”: 2,”to”: 3, “watch”: 4, “movies”: 5,”also”: 6, “football”: 7, “games”: 8,”Mary”: 9, “too”: 10}
那么,上面两个句子用词袋模型表示成向量就是:
[1, 2, 1, 1, 1, 0, 0, 0, 1, 1]
[1, 1,1, 1, 0, 1, 1, 1, 0, 0]
相对于英文,中文更复杂一些,涉及到分词。准确地分词是所有中文文本分析的基础,本文使用结巴分词,完全开源而且分词准确率相对有保障。
TF-IDF模型
词袋模型简单易懂,但是存在问题。中文文本里最常见的词是“的”、“是”、“有”这样的没有实际含义的词。一篇关于足球的中文文本,“的”出现的数量肯定多于“足球”。所以,要对文本中出现的词赋予权重。
一个词的权重由TF * IDF 表示,其中TF表示词频,即一个词在这篇文本中出现的频率;IDF表示逆文档频率,即一个词在所有文本中出现的频率倒数。因此,一个词在某文本中出现的越多,在其他文本中出现的越少,则这个词能很好地反映这篇文本的内容,权重就越大。
回过头看词袋模型,只考虑了文本的词频,而TF-IDF模型则包含了词的权重,更加准确。文本向量与词袋模型中的维数相同,只是每个词的对应分量值换成了该词的TF-IDF值。
LSI模型
TF-IDF模型足够胜任普通的文本分析任务,用TF-IDF模型计算文本相似度已经比较靠谱了,但是细究的话还存在不足之处。实际的中文文本,用TF-IDF表示的向量维数可能是几百、几千,不易分析计算。此外,一些文本的主题或者说中心思想,并不能很好地通过文本中的词来表示,能真正概括这篇文本内容的词可能没有直接出现在文本中。
因此,这里引入了Latent Semantic Indexing(LSI)从文本潜在的主题来进行分析。LSI是概率主题模型的一种,另一种常见的是LDA,核心思想是:每篇文本中有多个概率分布不同的主题;每个主题中都包含所有已知词,但是这些词在不同主题中的概率分布不同。LSI通过奇异值分解的方法计算出文本中各个主题的概率分布,严格的数学证明需要看相关论文。假设有5个主题,那么通过LSI模型,文本向量就可以降到5维,每个分量表示对应主题的权重。
demo
1 | import warnings |